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of light matter fields can occur, providing an explicit heterotic model realizing dynamical

SUSY breaking. This is demonstrated for the low-energy gauge group Spin(10). However,

our methods immediately generalize to Spin(Nc), SU(Nc), and Sp(Nc), for a wide range

of color index Nc. Moduli stabilization in vacua with a positive cosmological constant is

briefly discussed.
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1. Introduction

Heterotic M -theory [1 – 6] provides a promising framework to construct string theory vacua

with the spectrum of the supersymmetric standard model. Recently, vacua of this kind were

obtained in heterotic compactifications on non-simply connected Calabi-Yau manifolds [7 –

12]. One important task is to understand how supersymmetry can be broken in these

models. A natural attempt would be to create a hidden sector with broken supersymmetry
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and to communicate this breaking to the standard model sector via some mediation mech-

anism. Recently, a discussion of such mechanisms in various string compactification and

brane models was presented in [13]. In [14], Intriligator, Seiberg, and Shih demonstrated

that a class of N = 1 SQCD theories generates dynamical SUSY breaking in a metastable

vacuum. This class involves theories whose matter spectrum consists solely of Nf massive

fundamental multiplets, where Nf is in the free magnetic range. The existence of this

vacuum can then be explicitly established by using the Seiberg dual description [15 – 17],

in which the SUSY breaking vacuum appears at weak coupling. In addition, these theories

have Nc supersymmetric vacua so that the SUSY breaking vacuum is metastable.

It is important to understand whether this type of supersymmetry breaking can be

embedded in string theory, especially in realistic compactifications and brane models with

stable moduli. In [18, 19] these questions were studied in Type II string theory. In [20],

we began the study of how dynamical SUSY breaking can be realized in realistic theories

of the E8 ×E8 heterotic string. In this paper, we continue this research, presenting all the

requisite technical details and proofs leading to the results in [20]. The obvious approach is

to construct vacua whose low-energy field theory satisfies the criteria of [14] in the hidden

sector. Since the desired low energy theory is non-chiral, we have to choose a hidden

sector vector bundle with vanishing third Chern class. The spectrum of light particles

is determined by the cohomology groups with coefficients in different products of this

vector bundle. As one moves in the associated moduli space, some of the non-chiral matter

becomes massless on higher co-dimension subvarieties. Thus, the first step would be to find

a subvariety on which the massless spectrum satisfies the representation and multiplicity

criteria of [14]. Then as we move slightly away from this subvariety, the matter receives a

small mass, which is the final requirement in [14]. Unfortunately, moduli spaces of Calabi-

Yau manifolds and vector bundles are complicated and it is usually difficult to prove the

existence of subvarieties with the requisite properties. In this paper, we will explicitly

construct one class of examples where this is achieved. The structure group of the vector

bundle is chosen to be SU(4), which leads to a low-energy field theory with gauge group

Spin(10). We show that, in this example, it is possible to constrain the moduli in such

a way that Nf fundamental multiplets of SO(10), for any integer Nf , obtain light masses

whereas all other matter fields are heavy and can be integrated out. This gives an example

of a class of vacua of the heterotic string whose low-energy field theories satisfying the

criteria of [14]. It is important to note that heterotic compactifications potentially have

completely stabilized moduli. We will not discuss this in the present paper. Various aspects

of moduli stabilization in different heterotic models can be found in [21 – 35].

This paper is organized as follows. In section 2, we review the criteria that theories

with dynamical SUSY breaking must satisfy [14]. In section 3, a general discussion of

quadratic superpotentials for matter fields in heterotic compactifications is presented. The

fact that the number of light fields changes as we move in the moduli space means that

there exists a non-vanishing quadratic superpotential whose mass coefficients are moduli

dependent. The generic superpotential is one which is cubic in the open string fields. That

is, it is a quadratic function in the matter fields and a linear function in the vector bundle

moduli. However, there can also be higher order contributions to the superpotential of open

– 2 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
1

string fields arising from integrating out heavy Kaluza-Klein modes. Additionally, we give

a brief discussion of moduli stabilization and the possible relevance of the metastable SUSY

breaking for obtaining vacua with a small, positive cosmological constant. In section 4, it

is shown how the matter spectrum can change for special values of the moduli. This is the

basis for our choice of hidden sector vector bundle, which we describe in section 5.

To be as explicit as possible, we study the vector bundle and region of moduli space

leading to Nf = 8 flavors. The Calabi-Yau threefold is a double elliptic fibration over dP9

(del Pezzo) surfaces, and the SU(4) vector bundle is constructed as a non-trivial extension

with building blocks pulled back from the two different dP9 bases. The slope-stability

of the vector bundle is proven in Subsection 5.3, and follows from well-known results

about extensions of spectral cover bundles. This choice of the vector bundle makes the

study of cohomology groups tractable. On each dP9 surface, the cohomology groups of

interest are localized at points. The dimensions of the cohomology groups becomes the

number of points where the supports of two such factors overlap. We also show that the

superpotential is cubic in the open string fields. By arranging the supports in the right

way, one can construct N = 1, SO(Nc) SQCD with Nf massive fundamentals satisfying

the criteria of [14]. Hence, one can construct vector bundles of this type where the number

of light fundamental representations lies in the appropriate range for dynamical symmetry

breaking.

In section 6, we present a mathematical proof of the various details of the spectral

cover used in section 5. In the conclusion, section 7, we discuss possible extensions of our

results. Finally, mathematical properties of the support of line bundles and derived tensor

products needed in our analysis are presented in appendices A and B respectively.

2. Dynamical SUSY breaking

In this section, we will give a brief review of dynamical supersymmetry breaking follow-

ing [14]. We will state certain necessary ingredients which will be used in later sections.

The main example studied in [14] was N = 1, SU(Nc) SQCD with Nf fundamental

flavors Q, Q̃ in the free magnetic range [15, 16]

Nc + 1 ≤ Nf <
3

2
Nc . (2.1)

The flavors have a quadratic superpotential

W = TrmM , (2.2)

where

M = Qf · Q̃g, f, g = 1, . . . , Nf , (2.3)

so that they are all massive. This theory is known to have Nc supersymmetric vacua with

〈M〉 =
(

Λ3Nc−Nf det m
)1/Ncm−1 , (2.4)

where Λ is the strong-coupling scale. In was shown in [14] that, in addition, this theory

has a metastable SUSY breaking vacuum. This was established by studying the Seiberg
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dual [15, 16] of the original theory. The Seiberg dual theory is SU(Nf − Nc) SQCD with

Nf fundamentals q, q̃ and N2
f extra singlets Φg

f . It has a quadratic leading order Kähler

potential and the superpotential is given by (up to some field redefinition)

Wdual = hTr qΦq̃ − hµ2 Tr Φ (2.5)

where µ =
√

mΛ and h is a dimensionless parameter defined in [14]. For simplicity, we

have assumed that all eigenvalues of the mass matrix are equal. This theory breaks super-

symmetry by a rank condition mechanism since F-flatness for Φ requires that

q̃fqg = µ2δf
g , (2.6)

which cannot be satisfied because the number of colors of the dual theory Nf − Nc is less

than the number of flavors Nf . However, it was shown in [14] that there exists a metastable

SUSY breaking vacuum with

Vmin = Nc

∣

∣h2µ4
∣

∣ , (2.7)

a result which can be trusted in the regime

ε ∼
√

∣

∣

∣

m

Λ

∣

∣

∣
¿ 1 . (2.8)

Furthermore, as ε → 0 this state becomes very long-lived. For ε sufficiently small, the

life-time of the meta-stable state can exceed the age of the Universe, making these vacua

of phenomenological interest.

These results were also generalized in [14] for SQCD with gauge groups SO(Nc) and

Sp(Nc). In this paper, we will be particularly interested in SO(Nc) theories. Hence we

review some important facts about them [14, 17]. SO(Nc) SQCD has only one type of

fundamental representation Qf . The tree-level superpotential is given by eq. (2.2) with

M = Qf · Qg . (2.9)

The free magnetic range is defined by

Nc − 2 < Nf <
3

2
(Nc − 2) . (2.10)

The Seiberg dual theory then has the (non-Abelian) gauge group SO(Nf −Nc +4) and the

tree-level superpotential of the type eq. (2.5) with q̃ replaced by q. For Nf = Nc − 2, the

Seiberg dual gauge group is SO(2) ' U(1). Thus, the dual theory is really in the Coulomb

phase. However, the SUSY breaking vacuum still exists. Finally, there are special cases for

Nf = Nc − 3 and Nf = Nc − 4. A detailed investigation [14] reveals that they have SUSY

breaking vacua as well.

To summarize, if the number of fundamentals is in the range

Nc − 4 ≤ Nf <
3

2
(Nc − 2) , (2.11)

then the SO(NC) theory has a metastable SUSY breaking vacuum, which can be trusted in

the regime eq. (2.8). Details of dynamical SUSY breaking in SQCD with the gauge group

Sp(Nc) can be found in Subsection 6.3 of [14].

– 4 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
1

3. Embedding in heterotic compactifications

Compactifications of heterotic string theory or heterotic M-theory provide a promising way

of obtaining a realistic supersymmetric standard model spectrum with stabilized moduli.

The models of [14], reviewed in the previous section, can provide a mechanism to break

supersymmetry in heterotic compactifications. Below we will give a general discussion of

how dynamical supersymmetry breaking can be embedded in heterotic compactifications

as the hidden sector. In the next section, we will present a concrete class of heterotic

compactifications where the spectrum satisfies the requisite properties of [14].

3.1 Quadratic superpotentials for matter fields

An important ingredient of dynamical SUSY breaking models is the tree level quadratic

superpotential. Therefore, it is important to discuss how quadratic superpotentials for

matter field can arise in heterotic compactifications. Let X be a compactification Calabi-

Yau threefold and V be a vector bundle. The massless particle spectrum is associated with

the zero modes of the Dirac operator on X. Such zero modes are in one-to-one correspon-

dence with bundle-valued closed differential (0, 1)-forms and, hence, bundle cohomology

groups H1(X,U), where U can be V , V ∨, ∧2V , . . . . Cohomology groups with coefficients

in different U bundles define the massless states in the corresponding representations of

the low-energy gauge group in four dimensions.

However, the dimensions of these bundle cohomology groups are not a topological in-

variant. They depend on the location in the vector bundle and complex structure moduli

space. As we move in these moduli spaces, h1(X,U) can jump. This means that the corre-

sponding four-dimensional fields have a quadratic superpotential with the mass depending

on the vector bundle and complex structure moduli. Somewhere in the moduli space these

masses can vanish, thus increasing the number of the massless particles. If a compactifica-

tion has some chiral matter, then a certain number of fields will always stay massless since

they are protected by a topological invariant, the Atiyah-Singer index. On the other hand,

the models reviewed in section 2 are non-chiral. Hence, we are interested in compactifica-

tions with no chiral matter. In this case, there are no obvious obstructions to all matter

multiplets having a non-vanishing potential. One should expect, in compactifications with

no chiral matter, that every matter field will have a quadratic potential at a generic point

in moduli space. However, as we move in the moduli space some fields can become light

on higher co-dimension subvarieties.

Let us now discuss where quadratic potentials for matter fields can come from. Let Q

be a four-dimensional matter field transforming in some representation R of the low-energy

gauge group, Q̃ be a matter field in the conjugate representation R̄ (Q̃ might coincide with

Q if R is real) and φ represent vector bundle moduli. All these fields correspond to (0, 1)-

forms on X with coefficients in the vector bundles UR, U∨
R and ad(V )respectively. Denote

these forms as ΨQ,ΨQ̃ and Ψφ. Upon dimensional reduction, these fields get a cubic

superpotential (see, for example, [36]) of the form

W = λφTr QQ̃ . (3.1)
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The coefficients λ depend on the complex structure and vector bundle moduli and are given

by

λ =

∫

X
Ω ∧ Tr

(

Ψφ ∧ ΨQ ∧ ΨQ̃

)

, (3.2)

where Ω is the holomorphic (3, 0)-form. If Q and Q̃ are Higgs fields, this superpotential

represents a µ-term for them. Recently, such µ-terms were computed in realistic compact-

ification scenarios in [37 – 39]. The superpotential eq. (3.1) provides a generic mechanism

for non-chiral matter to receive a mass depending on various moduli. In addition, the open

string fields can also get a quartic superpotential of the form

W ∼ φφTr QQ̃ . (3.3)

Such a superpotential can arise after integrating out massive Kaluza-Klein modes. Indeed,

let Q̃KK be a Kaluza-Klein mode in the representation R̄. It can couple to φ and Q through

the a superpotential similar to eq. (3.1). In addition, it has a quadratic superpotential with

constant mass of order the compactification scale. Integrating Q̃KK out is equivalent to

eliminating auxiliary fields in supersymmetric field theories. This procedure yields a quartic

superpotential of the form eq. (3.3).

3.2 On moduli stabilization and vacua with a positive cosmological constant

Eventually, we are interested in compactifications with stable moduli. In this case, we can

replace the complex structure and vector bundle moduli with their vacuum expectation

values (VEV), thus obtaining a quadratic superpotential for the non-chiral matter. Let us

consider a compactification leading, at low energy, to a heterotic standard model in the

observable sector and to a hidden sector with gauge group SU(N), SO(N), or Sp(N). As

an example, one can take the structure group of the hidden sector vector bundle to be

SU(5), thus obtaining another SU(5) as the low energy gauge group. Another example is

to choose an SU(4) structure group, leading to an SO(10) low energy gauge group in the

hidden sector. We start our analysis by ignoring all couplings to matter fields and finding

a supersymmetric AdS vacuum by solving

DmoduliWmoduli = 0 . (3.4)

Questions concerning moduli stabilisation in heterotic compactifications were studied in [21 –

23, 40, 41, 24 – 32], and we will not review them in this paper. For our purposes, we assume

that eq. (3.4) stabilizes all the moduli in a phenomenologically acceptable range. We fur-

ther assume that the moduli VEVs give the hidden sector fundamental matter, for all Nf

flavors in the free magnetic range, a small mass from the superpotential eq. (3.1). All

the remaining non-chiral matter has very heavy mass and is integrated out. In the next

section, we will present an explicit example of a compactification with such properties.

By the results of [14], the supersymmetry will then be broken dynamically in the hidden

sector. This supersymmetry breaking is communicated to the standard model sector by

one of the mediation mechanisms (see, for example, [42] for a review).
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The metastable SUSY breaking vacuum obtained in [14] can be trusted as long as one

can neglect the 1
MPl

contributions to the potential energy and ε ∼ |m/Λ| 12 ¿ 1, where

m ∼ λ 〈φ〉. Furthermore, as discussed above, the requirement that ε ¿ 1 also renders

the lifetime of the metastable state longer than the age of our universe. Hence, part of

any discussion of dynamical supersymmetry breaking is to show that λ 〈φ〉 can, indeed, be

chosen to be sufficiently small. Unfortunately, an explicit demonstration of this requires

the construction of the complete perturbative and non-perturbative contributions to the

hidden moduli superpotential. These results are only partially known and will require

further research beyond the scope of this paper. That being said, it is not unreasonable to

expect ε ¿ 1. We note that the λ 〈φ〉QQ̃ terms in eq. (3.1) are similar to Higgs µ-terms,

which have λ 〈φ〉 of the order of the electroweak scale. Since Λ can be of the order of

1010 GeV or larger, this would lead to ε . 10−4 ¿ 1. This issue will be discussed in future

publications.

This dynamical SUSY breaking also has an obvious effect on the cosmological constant.

Let W0 be the value of the moduli superpotential in the solution eq. (3.4). It produces a

negative contribution to the cosmological constant of order −3 |W0|2

M2
Pl

. On the other hand,

the matter in the hidden sector in the metastable SUSY breaking vacuum gives a posi-

tive correction to the cosmological constant. Depending on the relative values of m and

W0, one can obtain a non-supersymmetric vacuum with a negative, vanishing, or positive

cosmological constant. In particular, vacua with a small, positive cosmological constant

can potentially be obtained this way. This important physics is model dependent and goes

beyond the range of this paper. Hence, we will not discuss it here but leave it for future

research.

4. Mass terms and discontinuous cohomology

Before we are going to delve into the technicalities of our model, let us first describe the

underlying idea of the construction. As described in section 3, we want a hidden sector

that contains no massless matter fields at a generic point in the moduli space, but does

contain massless matter for special values of the moduli. This is possible since the sheaf

cohomology that computes the spectrum is not a topological invariant, but can in fact

change as one varies the vector bundle moduli [43 – 46]. The simplest such “jump” occurs

already for an elliptic curve.

Let us start by reviewing this case, and take

E = C
/(

Z + τZ
)

(4.1)

to be an elliptic curve, and let us fix the point 0+0i = o ∈ E. An elliptic curve with origin

is, in fact, a group: The group law ¢ on the points of E is addition in C modulo the lattice

Z + τZ. Now the divisors on E are formal Z-linear combinations of points, and every line

bundle can be written as

OE

(

∑n
i=1 pi −

∑m
j=1 qj

)

, pi, qj ∈ E (4.2)
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But not all such line bundles are distinct, and the isomorphism classes of holomorphic line

bundles on E can be labeled by the two numbers

n − m ∈ Z (4.3a)
(

¢n
i=1 pi

)

¯
(

¢m
j=1 qj

)

∈ E (4.3b)

Depending on these two invariants, there are four cases to distinguish. They are

Case 1 Case 2 Case 3 Case 4

n − m > 0 = 0 = 0 < 0
(

¢n
i=1 pi

)

¯
(

¢m
j=1 qj

)

any ∈ E − {o} = o any

dimH0
(
∑n

i=1 pi −
∑m

j=1 qj

)

n − m 0 1 0

dimH1
(
∑n

i=1 pi −
∑m

j=1 qj

)

0 0 1 m − n .

(4.4)

In particular, we are interested in the n−m = 0 case. Then the line bundle has vanishing

first Chern class, but there are still two possibilities. Either the line bundle is the trivial

line bundle OE = E×C, or the line bundle is of the form OE(p−o) for some p 6= o ∈ E. In

the first case H0(E,OE) = H1(E,OE) = C, while in the latter case all cohomology groups

vanish.

The underlying idea of the spectral cover construction is to apply this fiberwise to an

elliptic fibration. Consider a spectral curve C that is a k-fold cover of the base, and let

σ be the zero section of the elliptic fibration. Then C intersects a generic fiber f in k

separate points C1, . . . , Ck, and σ intersects the fiber f in the single point o ∈ F . The

Fourier-Mukai transform constructs a rank k vector bundle whose restriction to f is

FM(OC)
∣

∣

f
= Of (C1 − o) ⊕ · · · ⊕ Of (Ck − o) . (4.5)

Obviously, the cohomology of FM(OC)
∣

∣

f
vanishes unless one of the points C1, . . . , Ck

coincides with o. But according to the Leray spectral sequence (see, for example, [47]),

the cohomology groups of FM(OC) can be computed in terms of the fiberwise cohomology.

If the latter vanishes, then the cohomology of FM(OC) has to vanish as well.

Note that it is not enough if only the cohomology at generic fibers vanishes, but only

if it vanishes at every fiber. Since the intersection points C ∩ f vary as we vary the fiber

f , we expect that there are some fibers where C1 = o or C2 = o or . . . or Ck = o. In

terms of the zero section σ of the elliptic fibration, these points are C · σ. As Ci = o is one

complex equation, these special fibers occur in codimension one on the base. If we were to

consider an elliptically fibered Calabi-Yau threefold, then the complex 2-dimensional base

will in general contain a curve which supports cohomology groups. Instead, we will take

the Calabi-Yau threefold X to be fibered over P
1,

X
pr−→ P

1 , (4.6)

such that a generic fiber

pr−1
(

{pt.}
)

' E1 × E2 (4.7)
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factors into the product of two elliptic curves. Then we arrange spectral cover-like bundles

on E1 and E2 separately, that is, construct a bundle such that the restriction to pr−1
(

{pt.}
)

is
(

OE1(C1 − o) ⊕ · · · ⊕ OE1(Ck − o)
)

£
(

OE2(D1 − o) ⊕ · · · ⊕ OE2(Dl − o)
)

,

C1, . . . , Ck ∈ E1 , D1, . . . ,Dl ∈ E2 . (4.8)

Generically none of the points {C1, . . . , Ck} and none of the points {D1, . . . ,Dl} coincides

with o, and the cohomology along the fiber direction vanishes. Only if Ci = o = Dj

simultaneously for some i = 1, . . . , k, j = 1, . . . , l then the cohomology of the bundle

eq. (4.8) is non-vanishing. But that yields two complex equations on the 1-dimensional

base P
1, which has no solutions in general. Only specially designed bundles then have non-

zero cohomology groups, while any small deformation will lead to vanishing cohomology.

5. The compactification

5.1 The Calabi-Yau threefold

In this section, we will present a concrete model of the hidden sector satisfying the criteria

for dynamical SUSY breaking. Since we are only interested in the supersymmetry breaking

in the hidden sector, we will not specify the visible sector and the five-brane structure. In

our model, we choose the Calabi-Yau threefold X to be a double elliptic fibration [48 – 52]

X = B1 ×P1 B2, (5.1)

where

B1 ' dP9 , B2 ' dP9 (5.2)

are two rational elliptic (dP9) surfaces. We will denote projections by πi = X → Bi and

βi = Bi → P
1, i = 1, 2, yielding a commutative square

dimC = 3 : X
π2

ÂÂ
??

??
??π1

ÄÄÄÄ
ÄÄ

ÄÄ

dimC = 2 : B1

β1 ÂÂ
??

??
??

B2

β2ÄÄÄÄ
ÄÄ

ÄÄ

dimC = 1 : P
1 .

(5.3)

The fibers of these projections are generically elliptic curves, with some degenerate fibers.

The Abelian surface fibration of section 4, eq. (4.7) is simply pr = β1 ◦π1 = β2 ◦π2. Let us

state some properties of the homology group of curves H2(Bi, Z) which we will be using.

A dP9 surface is obtained by blowing up nine points of P
2. From P

2 we inherit the class of

the hyperplane divisor `, and each blow-up adds one exceptional divisor. Hence1,

H2

(

Bi, Z
)

= 1 + 9 = 10 . (5.4)

1The construction involves two distinct dP9 surfaces B1 and B2. Hence, strictly speaking, one needs to

distinguish their divisors by labeling them differently. However, it will always be clear from the context

which surface we are referring to. Therefore, we suppress this extra label.
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We denote these 9 exceptional divisors ei, i = 1, . . . , 9. The intersection numbers of these

classes are

` · ` = 1 , ei · ej = −δij , ei · ` = 0 . (5.5)

Obviously the determinant of the intersection matrix is −1, and therefore the classes

`, ε1, . . . , e9 are an integral basis for the homology lattice. In this basis the fiber class

of the dP9 elliptic fibration reads

f = 3` −
9

∑

i=1

ei . (5.6)

Each exceptional divisor ei is a section of dP9 since it intersects the fiber f at one point.

We will choose e9 to be the zero section.

Finally, we need the even cohomology ring to compute Chern classes. It is generated

by the pull-backs

λ1 = π∗
1(`) , ε1

i = π∗
1(ei) , i = 1, . . . , 9 ,

λ2 = π∗
2(`) , ε2

i = π∗
2(ei) , i = 1, . . . , 9 ,

(5.7)

see [49, 53, 9]. The T 4 fiber can be expressed in two different ways, yielding the relation

3λ1 −
9

∑

i=1

ε1
i = 3λ2 −

9
∑

i=1

ε2
i . (5.8)

In addition, there are quadratic relations that are inherited from the base dP9 surfaces

(

λ1
)2

= −
(

ε1
1

)2
,

(

λ2
)2

= −
(

ε2
1

)2
,

λ1e1
i = 0 , λ2ε2

i = 0 , i = 1, . . . , 9 ,

ε1
i ε

1
j = δij

(

ε1
1

)2
, ε2

i ε
2
j = δij

(

ε2
1

)2
, i, j = 1, . . . , 9 ,

(5.9)

and one set of relations that involves both dP9 surfaces,

(

ε1
i − ε1

j

)(

ε2
k − ε2

l

)

= 0 , i, j, k, l = 1, . . . , 9 . (5.10)

To summarize, the even cohomology groups are

Hev
(

X, Z
)

= Z[λ1, λ2, ε1
1, . . . , ε

1
9, ε

2
1, . . . , ε

2
9]

/

{

Relations eqs. (5.8), (5.9), (5.10)
}

. (5.11)

5.2 The vector bundle

Having described the base space X, we now construct a slope-stable, holomorphic vector

bundle V with structure group SU(4) and vanishing third Chern class. Turning on such an

instanton in the hidden sector E8 gauge group breaks it to Spin(10). There are two types

of matter fields that appear in four dimensions, one can have multiplets transforming as 16,

16, and 10 of Spin(10). Their number is given by h1(X,V ), h1(X,V ∨), and h1(X,∧2V ),

respectively. Since we chose the third Chern class of V to be zero, the number of 16 and

the number of 16 is the same.

– 10 –
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Let us now describe the vector bundle V . We construct the rank 4 vector bundle V as

a non-trivial extension of a line bundle and a rank 3 vector bundle, that is,

0 −→ V1 −→ V −→ V3 −→ 0 . (5.12)

The rank 3 bundle V3 will be

V3 = π∗
1

(

L
)

⊗ π∗
2

(

W
)

, (5.13)

where L is a line bundle on B1 and W is a rank 3 vector bundle on B2 defined as follows.

The line bundle is

L = OB1(e1 − e9) . (5.14)

Really we could use the difference of any two sections that do not intersect, but for defi-

niteness we will use the exceptional divisors e1 and e9.

Furthermore, we define the rank three vector bundle W using the spectral cover con-

struction. The spectral curve CW , see [54], is taken to be an irreducible curve in the linear

system

CW ∈ ΓOB2

(

` + f
)

. (5.15)

From eqs. (5.5) and (5.6) it follows that ` intersects f at three points and, thus, is a triple

cover of the base P
1. In addition to the spectral curve CW , we also have to specify a line

bundle NW on CW . For simplicity, we take NW to be the trivial line bundle on CW

NW = OC . (5.16)

The stable rank 3 vector bundle W is then obtained by the Fourier-Mukai transform of

(CW , NW ) [54, 55],

W = FMB2

(

OC

)

. (5.17)

Using the action of the Fourier-Mukai transform on the level of Chern classes which were

worked out in [56], we find

rank(W ) = 3 , c1(W ) = ` − 3e9 − 8f , c2(W ) = 0; . (5.18)

Note that W is a U(3) vector bundle with non-trivial U(1) part

detW = OB2(` − 3e9 − 8f) (5.19)

In particular, ∧2W is not isomorphic to W∨.

Using again techniques developed in [56], one finds that the spectral cover of ∧2W is

in the linear system

C∧2W ∈ ΓOB2

(

− 2` + 9e9 + 14f
)

. (5.20)

To make sure that V has structure group SU(4), we finally pick the line bundle V1 to be

V1 = π∗
1

(

L−3
)

⊗ π∗
2

(

det−1 W
)

. (5.21)

This choice of V1 guarantees that the first Chern class of V vanishes.
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5.3 Chern classes and stability

Knowing the even cohomology ring explicitly eq. (5.11), one can easily compute all relevant

Chern classes. One finds

rank(V ) = 4 , c1(V ) = 0 , c2(V ) = 12
(

λ1
)2

+ 8
(

λ2
)2

, c3(V ) = 0 . (5.22)

Therefore, the gauge and gravity contribution to the heterotic anomaly equation for some

visible sector bundle Vvis reads

c2

(

TX
)

− c2

(

Vvis

)

− c2

(

V
)

=

=
(

12
(

λ1
)2

+ 12
(

λ2
)2

)

−
(

12
(

λ1
)2

+ 8
(

λ2
)2

)

− c2

(

Vvis

)

=

= 4
(

λ2
)2 − c2

(

Vvis

)

, (5.23)

where
(

λi
)2

is the fiber class of πi, i = 1, 2, and hence an effective curve. We conclude

that, depending on Vvis, it is possible to cancel the heterotic anomaly without introducing

anti-five-branes.

To show that V is slope-stable for some suitable Kähler class, we only have to sat-

isfy [57, 49]

1. The extension eq. (5.12) is not split.

2. The slope of V1 is negative.

We are going to compute the extensions in Subsection 5.5, and find that there are non-

trivial extensions. Finally, if one prefers to work in a region of the Kähler moduli space

where the slope µ(V1) of V1 is positive, then

µ
(

V1

)

> 0 ⇔ µ
(

V3

)

< 0 . (5.24)

In that case, one can just reverse the extension eq. (5.12). It turns out that for our bundle

V this does not influence any cohomology groups. Hence, in one way or the other V is

slope-stable.

5.4 Localization of cohomology

In this subsection, we will review some basics of sheaf cohomology and how it applies to

the vector bundles V and ∧2V which we are using throughout this paper. A detailed

consideration of them in a similar geometry can be found, for example, in subsections 7.3,

7.4 of [44]. Let

X
π−→ B (5.25)

be an elliptically fibered manifold, and U be a slope-stable, holomorphic vector bundle

obtained via the spectral cover construction [54, 55]. In particular, we assume that the

restriction U |F to a generic fiber is regular semistable and of degree 0. Applying the Leray

spectral sequence to that case (see, for example, [47]), one finds that the cohomology groups
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with coefficients in U are localized in a codimension two subvariety of X. As we saw in

section 4, the localized cohomology groups correspond to the intersection points

CU · σ , (5.26)

where CU is the spectral cover2 and σ is the zero section. In our case the Leray spectral

sequence determines the cohomology groups of U on X in terms of the cohomology of

certain torsion sheaves on B with support on π
(

CU · σ
)

. This torsion sheaf happens to be

R1π∗U , (5.27)

the sheaf whose “fiber” over a point p ∈ B is H1
(

fp, U |fp

)

, where fp = π−1(p) is the fiber

at the point p. Hence,

H1
(

X,U
)

= H0
(

B,R1π∗U
)

. (5.28)

As we discussed in section 4, the “fiber” dimension of R1π∗U is generically zero but can

jump occasionally, hence the R1π∗U is only a coherent sheaf and not a vector bundle.

In our case, the building blocks of the bundle V are vector bundles on the dP9 surfaces.

It the following, it will be useful to specialize the above to the case where the total space

is the surface Bi with projection βi : Bi → P
1. Let us denote the spectral curve CUi

and

the corresponding bundle Ui. In that case, CUi
· σ consists of a certain number of points.

The sheaf R1βi∗U is the skyscraper sheaf supported at these points and zero everywhere

else. At each of these points R1βi∗Ui is just C. Thus3,

H1
(

Bi, Ui

)

= H0
(

P
1, R1βi∗Ui

)

= H0
(

CU · σ, C
)

(5.29)

is nothing else than the number of points where the spectral cover intersects the zero

section. All higher cohomology vanish, and the details of R1βi∗Ui become irrelevant. Let

us denote by Hsupp(Ui) the points where the cohomology of Ui is supported, that is,

Hsupp(Ui) = supp
(

R1βi∗Ui

)

= βi

(

CUi
∩ σ

)

⊂ P
1 . (5.30)

In the next section, we will be interested in a special limit where points in Hsupp(Ui)

collide. For that case one has to count the points with multiplicities. Finally, we remark

that

Hsupp(U∨
i ) = βi

(

(¯CUi
) ∩ σ

)

= βi

(

CUi
∩ σ

)

= Hsupp(Ui) . (5.31)

In this paper, we will often encounter the case where the bundle on the threefold

X = B1 ×P1 B2 is the tensor product of bundles pulled back from B1 and B2, that is,

U = π∗
1

(

U1

)

⊗ π∗
2

(

U2

)

(5.32)

Such a vector bundle is, when restricted to a T 4-fiber of the fibration pr = β1 ◦π1 = β2 ◦π2,

of the form eq. (4.8). Hence the discussion at the end of section 4 applies, and we expect U

2The result for ∧2U is identical with CU being replaced by the spectral cover C∧2W of ∧2W .
3Here we are assuming for simplicity that the zero section σ does not meet any singularities of the

spectral curve CU . If they do meet in singular points it is still true that the cohomology is supported at

these points, one just has to be careful with the multiplicities.
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to have no cohomology for generic values of the moduli. Its cohomology can be computed

by applying the Leray spectral sequence twice, pushing down from X via Bi to P
1. One

obtains4

H2
(

X,U
)

=







H1
(

U1 ⊗ β∗
1 ◦ R1β2∗

(

U2

)

)

H1
(

β∗
2 ◦ R1β1∗

(

U1

)

⊗ U2

)







=

= H0
(

R1β1∗

(

U1

)

⊗ R1β2∗

(

U2

)

)

(5.33)

where we either push down via B1 or B2. Obviously, the cohomology of U is supported

at the intersection Hsupp(U1) ∩ Hsupp(U2). If Hsupp(U1) is distinct from Hsupp(U2), we

immediately get

R1β1∗

(

U1

)

⊗ R1β2∗

(

U2

)

= 0 ⇒ H2
(

X,U
)

= 0 . (5.34)

In general, h1(X,U) is given by the number of points common to both supports, that is

(counted with appropriate multiplicities),

dim H2
(

X,U
)

=
∣

∣Hsupp(U1) ∩ Hsupp(U2)
∣

∣ . (5.35)

Finally, take the index

χ(U) =

3
∑

i=0

H i
(

X,U
)

(5.36)

to be zero. This is always the case here, since we construct bundles whose cohomology

groups vanish at a generic point in the moduli space. The index is unchanged as one changes

the moduli, so if H2(X,U) jumps then H1(X,U) has to jump as well to compensate,

H1
(

X,U
)

' H2
(

X,U
)

=
∣

∣Hsupp(U1) ∩ Hsupp(U2)
∣

∣ . (5.37)

Here we used that H0(X,U) = 0 = H3(X,U) as required by stability.

Let us now apply these results to calculating cohomology H1(V ). In order to reproduce

the theory reviewed in section 2, we should get H1(V ) = 0. From the long exact sequence

of cohomology associated with the sequence eq. (5.12), we find that H1(V ) = 0 if H∗(V1) =

H∗(V3) = 0. Let us show that this is indeed the case at a generic point in the moduli space.

Let us start with H∗(V3). Since the definition of V3 in eq. (5.13) is of the form eq. (5.32),

we can simply apply the previous discussion. One finds that the support of H∗(V3) is

Hsupp(L) ∩ Hsupp(W ) . (5.38)

Using eqs. (5.5), (5.6) and (5.15), we find that the support of the cohomology of W ,

Hsupp(W ), is given by

CW · e9 = 1 (5.39)

The precise location of this point depends on the moduli of W . To obtain Hsupp(L) we

have to calculate the sheaf R1β1∗L. This is performed in appendix A, and the result is

R1β1∗L = 0 ⇒ Hsupp(L) = ∅ (5.40)

4For technical reasons, we compute H2(X, U). This is explained in appendix B.
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Thus, H∗(V3)=0. The cohomology of V1 is supported at

Hsupp
(

L3
)

∩ Hsupp
(

detW
)

. (5.41)

One can show that neither support in eq. (5.41) is empty. However, for generic choice of

the complex structure of dP9 and the bundle moduli of W the intersection is empty. Thus,

at a generic point in the moduli space H∗(V1) vanishes and so does H∗(V ). This is not

surprising. As discussed before, in models with no chiral matter one can expect that all

matter has a quadratic superpotential. Thus we can achieve that all particles transforming

as 16 and 16 receive a large mass and are integrated out.

5.5 Extensions and the spectrum of fundamentals

We want V to be a non-trivial extension. For this we need

Ext1
(

V3, V1

)

6= 0 . (5.42)

This is equivalent to

H1
(

X,V1 ⊗ V ∨
3

)

= H1
(

X,π∗
1

(

L−4
)

⊗ π∗
2

(

W∨ ⊗ det−1 W
)

)

6= 0 . (5.43)

To apply the discussion in the previous subsection we have to understand the intersection

of Hsupp(L4) and Hsupp(W∨ ⊗ det−1 W ). Despite the fact that the cohomology of L has

vanishing support, the line bundle L2 has non-trivial cohomology. In appendix A, it is

shown that Hsupp(L2) consists of three points on P
1. Let us denote them by q1, q2, q3.

That is,

Hsupp
(

L2
)

=
{

q1, q2, q3

}

. (5.44)

The actual location of these points depends on the complex structure of X. Further-

more, Hsupp
(

L4
)

contains fifteen points. It can be shown that these fifteen points con-

tain q1, q2, q3 each with multiplicity one plus 12 other points whose location is completely

generic. Let us denote these points by

Hsupp
(

L4
)

=
{

q1, q2, q3, s1, s2, . . . , s12

}

. (5.45)

Later in this section we will need to know the cohomology support of the bundle

∧2W = W∨ ⊗ det W . (5.46)

According to our discussion in the previous subsection, it is given by C∧2W · e9. Using

eqs. (5.5), (5.6), and (5.20) these curves intersect in 5 points. The location of these points

depends on the moduli of W and the complex structure of X. In the next section we

will explicitly demonstrate that there exist a regime in the moduli space where two points

appear with multiplicity two. For purposes that will be clear later on, we want to work in

this case where

Hsupp
(

∧2 W
)

=
{

2p1, 2p2, p3

}

(5.47)

for some points p1, p2, p3 ∈ P
1. Later, in this subsection, we will see that this choice leads

to the spectrum with the number of fundamentals Nf equal to eight. We found that it
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is the most instructive to do this case in detail. In the next subsection, we will discuss

how different numbers of flavors can be obtained. In fact, some of them will be found as a

simple modification of the Nf = 8 case. Finally, consider W∨ ⊗ det−1 W = (W ⊗ det W )∨.

A quick Chern class computation yields that the cohomology is supported at 21 points.

Upon closer inspection in Subsection 6.1, we will see that two of these points are p1 and

p2 again, leaving us with 19 other points which we denote as

Hsupp
(

W∨ ⊗ det−1 W
)

=
{

p1, p2, r1, r2, . . . , r19

}

. (5.48)

Note that the points qi, sj give the cohomology support of bundles on B1, and pk, rl give

the cohomology support of bundles on B2. For random values of the moduli, these two sets

of points will be disjoint, and all cohomology groups (including the Ext1) vanish according

to eq. (5.37). Obviously, we want to align some of the points to have extensions and a

suitable matter spectrum. Now the actual position of these points depends on complex

structure and vector bundle moduli, and one expects to be able to align as many points as

there are moduli to adjust. But actually proving this would be cumbersome. Instead,

we observe that one can always adjust 3 points by the way our Calabi-Yau threefold

X = B1 ×P1 B2 is constructed. A priori, the dP9 surfaces B1 → P
1 and B2 → P

1 are

elliptically fibered over two different P
1. In making the fiber product, one has to identify

the P
1 bases. But one can always choose coordinates to fix 3 points on the sphere! Hence

we can always pick a complex structure of X such that

q1 = p1 , q2 = p2 , s1 = r1 . (5.49)

For this particular complex structure,

Hsupp
(

L−4
)

∩ Hsupp
(

W∨ ⊗ det−1 W
)

=
{

p1, p2, r1

}

, (5.50)

and therefore

Ext1
(

V3, V1

)

= C
3 6= 0 . (5.51)

Now we will show that with the identification eq. (5.49) and assuming that p1 and p2

appear in Hsupp(∧2W ) with multiplicity two (see section 6 for details), we can make the

number of the SO(10) fundamentals

Nf = h1
(

X,∧2V
)

= 8 . (5.52)

This number satisfies the inequality eq. (2.11) for Nc = 10. In other words, we will prove

that in the moduli space of the complex structure and vector bundle there is at least one

locus where exactly 8 fundamentals become light. The spectral cover remains irreducible

and the vector bundle remains smooth and stable along this locus. All other matter fields

are massive and integrated out. Moving slight away from this locus gives light masses to

these eight fundamental multiplets. This is exactly what is need to satisfy the criteria

stated in section 2. To move away from this locus, for example, means to slightly separate

p1 from q1 and p2 from q2. This is controlled by complex structure and/or vector bundle
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moduli. In the next subsection, we will argue that the 8 fundamentals of interest receive a

superpotential of the form eq. (3.1).

To compute cohomology of ∧2V we have to relate it to cohomology of V1 and V3. From

the maps in eq. (5.12) we can construct two exact sequences

0 −→ ∧2V1 −→ ∧2V −→ Q1 −→ 0 ,

0 −→ Q2 −→ ∧2V −→ ∧2V3 −→ 0
(5.53)

for some cokernel Q1 and kernel Q2. These two exact sequences fit together into the

commutative diagram

0

²²

0

²²

0 // ∧2V1
// Q2

//

²²

V1 ⊗ V3
//

²²

0

0 // ∧2V1
// ∧2V //

²²

Q1
//

²²

0

∧2V3

²²

∧2V3

²²

0 0

(5.54)

with exact rows and columns. In our case ∧2V1 = 0 is the rank 0 vector bundle, since V1 is

a line bundle. Therefore the commutative diagram simplifies to the short exact sequence

0 −→ V1 ⊗ V3 −→ ∧2V −→ ∧2V3 −→ 0 . (5.55)

for ∧2V . Using the definitions eqs. (5.21) and (5.21), the outer terms are

∧2V3 = π∗
1

(

L2
)

⊗ π∗
2

(

∧2 W
)

,

V1 ⊗ V3 = π∗
1

(

L−2
)

⊗ π∗
2

(

W ⊗ det−1 W
)

= π∗
1

(

L−2
)

⊗ π∗
2

(

∧2 W∨
)

.
(5.56)

If we abbreviate

F =
[

π∗
1

(

L2
)

⊗ π∗
2

(

∧2 W
)]∨

, (5.57)

then the sequence eq. (5.55) can be written as

0 → F → ∧2V → F
∨ → 0 . (5.58)

Now we can use the long exact sequence of cohomology to relate the cohomology groups

of ∧2V to the cohomology groups of F. Since ∧2V is self-dual, Serre duality tells us that

h1(X,∧2V ) = h2(X,∧2V ). Hence we can concentrate on the part of the sequence involving

H2(X,∧2V ), which reads

· · · δ−→ H2
(

X,F
)

−→ H2
(

X,∧2V
)

−→ H2
(

X,F∨
)

−→ H3
(

X,F
)

= 0 , (5.59)

– 17 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
1

where

δ : H1
(

X,F∨
)

→ H2
(

X,F
)

(5.60)

is a coboundary map, which we can think of as a matrix with entries depending on vector

bundle moduli. It is determined by the chosen extension class

[ε] ∈ Ext1
(

V3, V1

)

= H1
(

X,V1 ⊗ V ∨
3

)

= H1
(

X,π∗
1

(

L−4
)

⊗ π∗
2

(

W∨ ⊗ det−1 W
)

)

. (5.61)

The coboundary map eq. (5.60) is simply multiplication by ε followed by a suitable con-

traction of vector bundle indices. The vector bundle extension, that is the cohomology of

the vector bundle V1 ⊗ V ∨
3 , is supported at

Hsupp
(

L−4
)

∩ Hsupp
(

W∨ ⊗ det−1 W
)

=
{

p1, p2, r1

}

, (5.62)

whereas the cohomology of F
∨, F is supported at

Hsupp
(

L2
)

∩ Hsupp
(

∧2 W
)

=
{

p1, p2

}

. (5.63)

Observe that the support of the extension class contains an additional point over the

support of the cohomology of F
∨, F. Hence, we can choose the extension class [ε] to be

localized at this additional point r1, and we are going to do so in the following. In that

case the coboundary map δ is automatically zero, and the sequence eq. (5.59) becomes

0 −→ H2
(

X,F
)

−→ H2
(

X,∧2V
)

−→ H2
(

X,F∨
)

−→ 0 . (5.64)

Therefore,

h2
(

X,∧2V
)

= h2
(

X,F
)

+ h2
(

X,F∨
)

. (5.65)

The cohomology group H2(X,F∨) is straightforward to calculate using the Leray spectral

sequence, see also eq. (5.33). The answer is

H2
(

X,F∨) = H0
(

P
1, R1β1∗

(

L2
)

⊗ R1β2∗

(

∧2 W
)

)

. (5.66)

We only have to be careful with the multiplicity of points in Hsupp(∧2W ). As discussed

before, the push-down terms are skyscraper sheaves supported at the points

R1β1∗

(

L2
)

= Oq1 ⊕ Oq2 ⊕ Oq3 ,

R1β2∗

(

∧2 W
)

= 2Op1 ⊕ 2Op2 ⊕ Op3 ,
(5.67)

where Op denotes the “skyscraper” sheaf which is a one-dimensional vector space at p at

zero everywhere else. Recalling our identifications eq. (5.49), we obtain5

R1β1∗

(

L2
)

⊗ R1β2∗

(

∧2 W
)

= 2Op1 ⊕ 2Op2 . (5.68)

Then using eq. (5.66) it follows that

h2
(

X,F∨
)

= h0
(

P
1, 2Op1 ⊕ 2Op2

)

= 4 . (5.69)

5Recall that Op ⊗ Op = Op whereas Op ⊗ Oq = 0 for p 6= q.
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In exactly the same way one arrives at

h2
(

X,F
)

= 4 , (5.70)

as well. Therefore, we find from eq. (5.65) that

Nf = h2
(

X,∧2V
)

= h1
(

X,∧2V
)

= 8 . (5.71)

Thus, our model indeed has Nf = 8 massless fundamental multiplets, satisfying the in-

equality eq. (2.11) for Nc = 10. As discussed earlier in this subsection we can give them

small masses. In the next subsection we will show that they have a superpotential of the

form eq. (3.1).

5.6 Different numbers of flavors

In the following, we will always stick to the Nf = 8 case in order to make everything as

explicit as possible. However, one can easily construct similar bundles yielding different

values for Nf . Let us explore these possibilities.

• One simple change would be to deform one of the ordinary double points such that

Hsupp
(

∧2 W ′
)

=
{

2p1, p2, p
′
2, p3

}

(5.72)

for the new spectral curve C ′. This is achieved by modifying the moduli of W . In

terms of the equations for the curve to be discussed in section 6, this amounts to

allowing the cubic F2, eq. (6.13), to be arbitrary. Following exactly the same steps

as in Subsection 5.5, this yields Nf = 6.

• Similarly, by modifying the vector bundle moduli, it is easy to obtain any even Nf

less than six. For completeness, let us discuss this case even though it does not

satisfy (2.11). Consider the regime in the moduli space where

Hsupp
(

∧2 W ′
)

=
{

p1, p
′
1, p2, p

′
2, p3

}

(5.73)

A calculation analogous to the one performed in the previous subsection yields Nf =

4. Now assuming that Hsupp(∧2W ) does not have any double points, let us move

in the moduli space of complex structures so that the point q2 ∈ Hsupp(L2) gets

separated from p2 ∈ Hsupp(∧2W ) and is not identified with any other point of

Hsupp(∧2W ). Then the analysis of the previous subsection yields Nf = 2. Note that

this separation also changes the possible non-trivial extensions. From eqs. (5.45)

and (5.48) it follows that

Ext1(V3, V1) = C
2. (5.74)

Separating further q1 and p1 makes the supports Hsupp(L2) and Hsupp(∧2W ) com-

pletely disjoint. This yields Nf = 0. From eqs. (5.45) and (5.48) it follows that in

this case

Ext1(V3, V1) = C. (5.75)
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• Another easy modification is to take a spectral curve C ′′ with one ordinary double

points and one ordinary triple point. In terms of the intersection points W ′′
∣

∣

f1
this

means (see eq. (6.9)) that

S′′
1 = ¯S′′

1 = T ′′
1 . (5.76)

To have enough parameters to adjust the spectral curve, one needs C ′′ ∈ ΓOB2(`+2f),

which we are free to choose. The only change to the matter spectrum of the resulting

vector bundle is that now Nf = 10. Similarly, by considering the spectral cover of W

to be in ΓOB2(` + nf) for greater values of n, it is possible to obtain greater values

of Nf .

• The fact that Nf was always even so far is an artifact of the rank 3 bundle W . This

can be relaxed, for example, by constructing rank 5 bundles as extension of a line

bundle and a rank 4 bundle W ′′′. The same trick of aligning points on the base P
1

can then be used to adjust the matter spectrum. In this way, one can find odd Nf

lying in the range eq. (2.11).

To conclude, we have shown that we can obtain the spectrum with Nf = 0, . . . , 10, . . . .

Thus, in particular, we have shown that we can find any Nf in the range (2.11).

5.7 The superpotential

Let us again consider the exact sequence eq. (5.59). Now let us pick a generic extension ε

instead of one supported only at r1. In that case the bundle extension is supported at the

points p1, p2 which support the cohomology of F. Then, generically, the coboundary map

δ becomes an isomorphism and the exact sequence eq. (5.59) becomes

0 −→ H2
(

X,∧2V
) ∼−→ H2

(

X,F∨
)

−→ 0 , (5.77)

resulting in

Nf = h1
(

X,∧2V
)

= h2
(

X,∧2V
)

= h2
(

X,F∨
)

= 4 . (5.78)

In other words, turning on the vector bundle moduli parametrizing Ext1(V3, V1) we can

remove half of H2(X,∧2V ). Similarly, turning on the anti-extension moduli coming from

Ext1(V1, V3) we can remove the other half of H2(X,∧2V ). This means that we have a

superpotential that is quadratic in the elements of H2(X,∧2V ), giving mass to all fields at

a generic point in the moduli space.

Let us finish by giving a general explanation why coboundary maps correspond to a

cubic superpotential of the form in eq. (3.1). Let the vector bundle U be the extension of

U1 and U2,

0 −→ U1 −→ U −→ U2 −→ 0 . (5.79)

In the long exact sequence for the cohomology there is a coboundary map

δ : H1
(

X,U2

)

→ H2
(

X,U1

)

= H1
(

X,U∨
1

)∨
. (5.80)

The map δ is a multiplication by a matrix ε of differential forms parametrized by the vector

bundle moduli. It is an element of the extension group [ε] ∈ Ext1(U2, U1) = H1(X,U1⊗U∨
2 ).
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Eq. (5.80) says that the tensor product H1(X,U2)⊗Ext1(U2, U1) defines an element in the

dual space H1(X,U∨
1 )∨. Elements of H1(X,U∨

1 )∨ can naturally be paired up with elements

of H1(X,U∨
1 ) to obtain a complex number. Thus, we can rewrite this map as

H1
(

X,U2

)

⊗ Ext1
(

U2, U1

)

⊗ H1
(

X,U∨
1

)

→ C . (5.81)

Looking at the long exact sequence in cohomology, elements of H1(X,U2) label a quotient

of H1(X,U). Similarly, H1(X,U∨
1 ) is a quotient of H1(X,U∨). In our case ∧2V is real so

both are some quotient of the same space H1(X,∧2V ). The corresponding four-dimensional

fields Q are in a real representation of the low-energy gauge group. Finally, elements of

Ext1(U2, U1) are part of the vector bundle moduli [58, 59]. Denote them as φ. Then the

map eq. (5.81) is the algebraic version of the superpotential eq. (3.1).

6. The geometry of the spectral cover

6.1 Requirements

In this section, we will give a detailed explanations of why the support of ∧2W can of the

form eq. (5.47). Recall that, as in eq. (4.5), the restriction of W to a generic fiber f is

W
∣

∣

f
= Of (C1 − o) ⊕ Of (C2 − o) ⊕ Of (C3 − o) , (6.1)

where the points C1, C2, C3, and o on f are intersection points with the spectral curve CW

and the zero section σ,

{

C1, C2, C3

}

= CW · f , o = σ · f . (6.2)

Tensor operations commute with the restriction, so we can simply write down6

∧2W
∣

∣

f
= Of (C1 ¢ C2 − o) ⊕ Of (C1 ¢ C3 − o) ⊕ Of (C2 ¢ C3 − o) ,

∧3W
∣

∣

f
= det W

∣

∣

f
= Of (C1 ¢ C2 ¢ C3 − o) .

(6.3)

Now we want a special spectral cover such that the cohomology support Hsupp(∧2W ) has

a pair of points with multiplicity 2. In other words, on two special fibers

f1 = β−1
2 (p1) , f2 = β−1

2 (p2) (6.4)

we want (labeling the origin oi = σ · fi)

∧2W
∣

∣

f1
= Of1 ⊕ Of1 ⊕ Of1(a1 − o1) ,

∧2W
∣

∣

f1
= Of1 ⊕ Of1 ⊕ Of1(a2 − o2) .

(6.5)

for some points ai ∈ fi −{oi}, i = 1, 2. In terms of the spectral curve CW , this means that

we want

CW · fi =
{

2Si, Ti

}

(6.6)

6The group law ¢ on the elliptic curve f satisfies Of (p − o) ⊗ Of (q − o) = Of

`

(p ¢ q) − o
´

.
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satisfying

Si ¢ Ti = oi , Si ¢ Si = ai 6= oi . (6.7)

Note that there are two ways to achieve intersections with multiplicities as in eq. (6.6).

Deforming the fiber away from fi, the intersection points with CW have to split up into 3

distinct points. This triple can have a monodromy as one moves around fi, or it can have

no monodromy. In the first case the spectral curve CW has a branch point, while in the

second case the spectral curve has an ordinary double point. The corresponding spectral

curve for ∧2W has a worse singularity in the first case, and again an ordinary double point

in the second case. Now an ordinary double point is simply a transverse intersection of two

different sheets of CW . While technically called a singularity, it does not change anything

for the spectral cover construction. Hence, we will demand that the points S1 and S2 are

ordinary double points of CW . Such a spectral curve would yield

W
∣

∣

fi
= Ofi

(Si − oi) ⊕ Ofi
(Si − oi) ⊕ Ofi

(Ti − oi) , (6.8a)

W∨
∣

∣

fi
= Ofi

(¯Si − oi) ⊕ Ofi
(¯Si − oi) ⊕ Ofi

(¯Ti − oi) , (6.8b)

∧2W
∣

∣

fi
= Ofi

⊕ Ofi
⊕ Ofi

(Si ¢ Si − oi) , (6.8c)

det W
∣

∣

fi
= Ofi

(Si ¢ Si ¢ Ti − oi) = Ofi
(Si − oi) , (6.8d)

(

W∨ ⊗ det−1 W
)
∣

∣

∣

fi

= Ofi
(¯Si ¯ Si − oi) ⊕ Ofi

(¯Si ¯ Si − oi) ⊕ Ofi
, (6.8e)

as desired. Note that the last equation, eq. (6.8e), tells us that the cohomology of W∨ ⊗
det−1 W is also supported at p1 and p2, which we announced previously in eq. (5.48).

To summarize, we require that our spectral curve satisfies

• CW ∈ ΓOB2

(

` + f
)

, see eq. (5.15).

• CW has 2 ordinary double points S1 and S2 in two different fibers f1 and f2, which

we take to be non-degenerate elliptic curves for simplicity.

• Then there are two more points T1, T2 satisfying

fi · CW = {2Si, Ti} . (6.9)

With respect to the group law on the elliptic curves, we require that

Si ¢ Ti = σ · fi (6.10)

• The double points do not coincide with the origin, that is

Si 6= σ · fi ⇔ Ti 6= σ · fi ⇔ detW
∣

∣

fi
6= Ofi

. (6.11)
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6.2 The pencil of cubics

So far, we assumed the existence of a suitable spectral curve CW in order to construct our

vector bundle. Given that the surface B2 has 10 and the curve CW has 5 parameters, it is

very plausible that some choice of dP9 surface and curve actually satisfies the requirements

laid out in Subsection 6.1. The purpose of this section is to write an explicit spectral curve

and show that it satisfies all requirements. This will establish the existence of curve CW

and, hence, of our vector bundle.

First, we have to specify the actual dP9 surface B2. We define it as a “Pencil of

Cubics”, that is, a bi-degree (3, 1) hypersurface in P
2 × P

1. In the following, we are going

to use coordinates [x : y : z] for the coordinates on P
2 and [u : v] for P

1. Define the two

cubics

F1(x, y, z) = (x − y) (x − z) (x + z) + z
(

x2 + y2 − z2 − 2 yx − 4 zx + 5 yz
)

F2(x, y, z) = (x − z) (x − y) (x + y) + y
(

x2 + z2 − y2 − 2 zx − 4 yx + 5 yz
)

= F1(x, z, y) ,

(6.12)

then

P
(

x, y, z; u, v
)

= uF1(x, y, z) + v F2(x, y, z) (6.13)

is the desired equation. We define

B2 =
{

P = 0
}

⊂ P
2 × P

1 . (6.14)

The elliptic fibration β2 : B2 → P
1 is just the projection on the second factor, and we write

f[u0:v0] = β−1
2

(

[u0 : v0]
)

(6.15)

for the fiber over [u0 : v0] ∈ P
1. The discriminant locus of the elliptic fibration is

∆(P ) =
25

16

(

131 v10 + 5774uv9 − 94185u2v8

− 2553672u3v7 + 26073510u4v6 − 49632012u5v5 + 26073510u6v4

− 2553672u7v3 − 94185u8v2 + 5774u9v + 131u10
)

(

u + v
)2

(6.16)

We observe that B2 is a smooth surface, but of course some fibers of the elliptic fibration

are degenerate. More precisely, B2 has 10I1 and 1I2 singular Kodaira fibers, none of which

lie over the two points [u : v] = [1 : 0], [0 : 1].

Note that the point [2 : 1 : 1] ∈ P
2 is a basepoint of the pencil of cubics (of multiplicity

1). That is,

F1(2, 1, 1) = 0 = F2(2, 1, 1) , −10 =
∂F1

∂y

∣

∣

∣

∣

(2,1,1)

6= ∂F2

∂y

∣

∣

∣

∣

(2,1,1)

= 0 . (6.17)

Such a basepoint defines a section of the elliptic fibration, which we declare to be the zero

section

e9 =
{

(

[2 : 1 : 1], [u : v]
)

∣

∣

∣
[u : v] ∈ P

1
}

⊂ B2 (6.18)
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6.3 The spectral curve

Having fixed the dP9 surface B2, we are now going to pick a curve CW on it. For that, we

define the equation

Q
(

x, y, z; u, v
)

= vz − uy (6.19)

on B2 ⊂ P
2 × P

1. Its zero locus will be the curve

CW =
{

Q = 0
}

⊂ B2 . (6.20)

Clearly, C is a 3-section of the elliptic fibration since its intersection with the fiber over

[u0 : v0] ∈ P
1 is given by the cubic equation

CW |f[u0:v0]
=

{

P (x, y, z; u0, v0) = 0 = Q(x, y, z; u0, v0)
}

. (6.21)

Note that a degree (1, 0) equation is, by definition, the hyperplane section of P
2, which is

the homology class

[

{x = 0}
]

=
[

{y = 0}
]

=
[

{z = 0}
]

= ` ∈ H2

(

B2, Z
)

. (6.22)

Similarly, a degree (0, 1) equation cuts out one elliptic fiber of B2,

[

{u = 0}
]

=
[

{v = 0}
]

= f ∈ H2

(

B2, Z
)

. (6.23)

Therefore

CW ∈ ΓOB2

(

` + f
)

⇒ [CW ] = ` + f ∈ H2

(

B2

)

. (6.24)

Computing the monodromies around branch points of CW , we find that it is an irreducible

curve.

The curve CW is singular since having two “ordinary double points” was part of the

requirements. These two points are

S1 =
(

[0 : 0 : 1], [1 : 0]
)

∈ f[1:0] ,

S2 =
(

[0 : 1 : 0], [0 : 1]
)

∈ f[0:1] .
(6.25)

Since each fiber contains 3 points of CW (counted with multiplicity), there is another point

in f[1:0] and f[1:0], respectively. They are smooth points of CW , and we label them

T1 =
(

[1 : 0 : 1], [1 : 0]
)

∈ f[1:0] ,

T2 =
(

[1 : 1 : 0], [0 : 1]
)

∈ f[0:1] .
(6.26)

Apart from S1 and S2, there are no other singularities. As a 3-sheeted cover of the base

P
1 there are 6 branch points in other fibers, this is depicted in figure 1.

It remains to show that

S1 ¢ T1 = 0 , S2 ¢ T2 = 0 (6.27)
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S1

P1

CW

T1

T2

S2

[1 : 0] [0 : 1]

β2

Ordinary double

point

(no monodromy)

Branch point

(monodromy

exchanges sheets)

Figure 1: The 3-section CW .

in the group law on the respective fibers, then the curve CW satisfies all requirements.

Note that everything so far was by construction symmetric under the exchange
(

[x : y : z], [u : v]
)

↔
(

[x : z : y], [v : u]
)

(6.28)

Because of this symmetry, it suffices to show that S2 ¢T2 = 0. The elliptic curve f[0:1] ⊂ P
2

is given by the cubic

P
(

x, y, z; 0, 1) = x3 − z3 − 5xz2 − x2y + 6 yz2 + x2z + y2z − 2xyz (6.29)

with origin

e9 ∩ f[0:1] = [2 : 1 : 1] ∈ P
2 (6.30)

To bring the cubic into Weierstrass form we have to do a birational transformation of the

P
2. Specifically, we choose new projective coordinates [X : Y : Z] via

x = 2 (X − Z) (2X − 7Z) ,

y = 2X2 − 34XZ2 + 57Z3 + 5Y Z2 ,

z = 2 (X − Z)2 ,

(6.31)

which maps the chosen origin to7 [0 : 1 : 0] in the new coordinates. Substituting into

eq. (6.29) we find

P
(

X,Y,Z; 0, 1) = −50Z (X − Z)2
(

−Y 2Z + 4X3 − 52XZ2 + 73Z3
)

(6.32)

Hence, the Weierstrass form of our elliptic curve is

Y 2Z = 4X3 − 52XZ2 + 73Z3 (6.33)

7[0 : 1 : 0] is the origin in the Weierstrass form of a cubic.
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P
2 S1 T2 e9 ∩ f[0:1]

[x : y : z] coordinates [0 : 1 : 0] [1 : 1 : 0] [2 : 1 : 1]

[X : Y : Z] coordinates [1 : 5 : 1] [1 : −5 : 1] [0 : 1 : 0]

Table 1: Coordinate transformation to Weierstrass form

The coordinates of the points S2 and T2 turn out to be at the locus where the birational

transformation is not defined, but one can still find their values by continuity. The new

coordinates of the relevant points are listed in table 1. Recall that the inverse in the group

law of the cubic has a particularly nice form for a cubic in Weierstrass form, it is

¯[X : Y : Z] = [X : −Y : Z] . (6.34)

Hence, we immediately realize that

¯S2 = T2 ⇔ S2 ¢ T2 = 0 , (6.35)

as required.

7. Conclusion and further directions

In this paper, we addressed the question of realizing dynamical SUSY breaking [14] in

heterotic model building. We discussed how quadratic superpotentials for matter fields

arise in heterotic compactifications. The mass of these fields depends on the complex

structure and vector bundle moduli. Thus, by moving in the moduli space, we can make

some of the matter fields either very light or very heavy. From an algebraic geometry

viewpoint, this means that the dimension of various cohomology groups associated to the

number of matter particles jumps as we move in the moduli space. We present a stable,

holomorphic hidden sector bundle satisfying the criteria for dynamical SUSY breaking.

The main example studied in this paper is SO(10) SQCD with Nf = 8 fundamental fields.

All other matter fields are heavy and integrated out. We give a detailed analysis showing

that there is a locus in the moduli space where exactly eight fundamentals become massless

whereas all other matter is massive. Moving slightly away from this locus is equivalent to

generate the superpotential eq. (3.1). Hidden sectors for different values of Nf can be

constructed analogously. This is discussed in subsection 5.6. In particular, it is shown

that it is possible to obtain SO(10) SQCD with any number of fundamental fields in the

range (2.11)

Let us briefly discuss various generalizations of these results. One natural direction is

to construct the hidden sector breaking supersymmetry in realistic standard model com-

pactifications [7 – 12]. That is, in addition to the sector whose particle spectrum is that

of a supersymmetric standard model, to put a hidden sector vector bundle (presumably

one without Wilson lines) that will lead to one of the theories studied in [14]. Another

direction would be to understand the F-theory dual [60, 54] of a model studied in this

paper. The F-theory dual space is a Calabi-Yau fourfold Y and the matter is supposed

– 26 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
1

to be localized on intersecting D7-branes wrapping four-cycles of Y . The moduli of the

heterotic vector bundle will be mapped to certain geometric moduli of Y . Thus, giving

mass to the fundamentals by means of the superpotential eq. (3.1) on the F-theory side will

have a geometric interpretation as brane separation. Having this interpretation, it might

be easier to understand the location of the loci where the right number of the fundamental

multiplets receive a small mass. Another possible advantage of it is that it could be easier

to understand under what conditions the moduli controlling the masses of the fundamen-

tals can be stabilized in a regime of interest. Unfortunately, it is not yet known how the

heterotic/F-theory duality map acts on the spectrum.
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A. The support of Lk

Let L = OB(s1−s2) be a line bundle on a dP9 surface B, and s1 and s2 be two sections that

do not intersect. For example, one can use s1 = e1 and s2 = e9 where e1 and e9 are two

out of the nine exceptional divisors from the blow-up. Thus both e1 and e9 are isomorphic

to P
1. We will denote by β the projection of B to the base P

1. Via the Leray spectral

sequence, the cohomology of L is determined by the cohomology (on P
1) with coefficients

in either β∗L or R1β∗L. In particular, as the base is 1-dimensional one obtains

H0
(

B,L
)

= H0
(

P
1, β∗L

)

,

H1
(

B,L
)

= H0
(

P
1, R1β∗L

)

⊕ H1
(

P
1, β∗L

)

,

H2
(

B,L
)

= H1
(

P
1, R1β∗L

)

.

(A.1)

Since s1 and s2 do not intersect, the restriction of L to any fiber gives a non-trivial line

bundle of degree zero on elliptic curve, see section 4. Such a line bundle (on a fiber) has

no cohomology, that is, all cohomology groups vanish. Therefore, both β∗L or R1β∗L are

the zero sheaf

β∗L = R1β∗L = 0 . (A.2)

This means that in turn all cohomology groups (on B) of L vanish,

H∗
(

B,L
)

= 0 . (A.3)

Let us now consider L2 = OB(2s1 − 2s2). As we will see below, for this line bundle β∗L
2

is still zero. However, R1β∗L
2 is not zero. Instead, it is a torsion sheaf. According to the

Leray spectral sequence,

H1
(

B,L2
)

= H0
(

P
1, R1β∗L

2
)

. (A.4)
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The right hand side is just the number of points at which R1β∗L
2 is supported. Let us

calculate this number. To do so we will be using the following standard exact sequence [47].

Let D be any effective divisor on a manifold Z, then the sequence

0 −→ OZ(−D) −→ OZ −→ OD −→ 0 . (A.5)

is exact. The first map OZ(−D) → OZ is multiplication by a global section of OZ(D) which

vanishes exactly at D. The second map OZ → OD is simply the restriction to D ⊂ Z.

Let us apply it to the case when Z ' P
1 and D ' {pt.}. Then we have

0 −→ OP1(−1) −→ OP1 −→ Op −→ 0 . (A.6)

The cokernel Op is the skyscraper sheaf supported at a point p. This sequence can easily

be generalized for the case of n points, and the cokernel of the inclusion map

i : OP1(−n) → OP1 (A.7)

is a skyscraper sheaf supported at n points. The detailed location of these points depends

on the map i which is multiplication by a global section of O(n). Any such section has n

zeroes which are the support of the cokernel of i. Conversely, for any n points there is such

a (unique up to an overall constant) section vanishing at the n points.

Now let us apply the short exact sequence eq. (A.4) to the bundle L2. First we consider

the sequence

0 −→ OB(s1 − s2) −→ OB(2s1 − s2) −→ Os1(2s1 · s1) −→ 0 . (A.8)

The bundle Os1(2s1 · s1) is a bundle on s1 ∼ P
1 of degree −2 = 2s2

1. This short exact

sequence on B leads to a long exact sequence on P
1 of the direct images

0 −→ β∗OB(s1 − s2) −→ β∗OB(2s1 − s2) → O(−2) −→ R1β∗OB(s1 − s2) −→ · · · . (A.9)

We have shown above that β∗OB(s1 − s2) = R1β∗OB(s1 − s2) = 0. Therefore,

β∗OB(2s1 − s2) = OP1(−2) ,

R1β∗OB(2s1 − s2) = 0
(A.10)

Finally, consider the sequence

0 −→ OB(2s1 − 2s2) −→ OB(2s1 − s2) −→ OP1(1) −→ 0 , (A.11)

where we used the intersection numbers eq. (5.5) already. Inserting eq. (A.10), we find

direct images

0 −→ OP1(−2) −→ OP1(1) −→ R1β∗

(

L2
)

−→ 0 . (A.12)

From the above discussion it follows that R1β∗

(

L2
)

is the skyscraper sheaf supported at

3 points. In section 5, we denoted these points by q1, q2, q3. Similarly, one can show that

the sheaf R1β∗

(

L3
)

is supported at 8 points and the sheaf R1β∗

(

L4
)

is supported at 15

points. It is not hard to show that these 15 points contain the points q1, q2, and q3 each

with multiplicity one.
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B. Derived tensor products

Consider the case of a bundle on X = B1 ×P1 B2 constructed as

U = π∗
1

(

U1

)

⊗ π∗
2

(

U2

)

, (B.1)

as we are using throughout this paper. Moreover, let the bundles Ui on Bi be semistable

of fiber-degree zero. For ease of presentation, we assume that their direct image contains

only a single skyscraper sheaf, that is,

β1∗

(

U1

)

= 0 , R1β1∗

(

U1

)

= Op , (B.2)

β2∗

(

U2

)

= 0 , R1β2∗

(

U2

)

= Oq (B.3)

for two points p, q ∈ P
1. To compute the cohomology we can apply the Leray spectral

sequence, either pushing down to B1 or to B2,

H i
(

X,U
)

=
⊕

n+m=i

Hn
(

U1 ⊗ β∗
1 ◦ Rmβ2∗

(

U2

)

)

=

=
⊕

n+m=i

Hn
(

β∗
2 ◦ Rmβ1∗

(

U1

)

⊗ U2

) (B.4)

However, a problem arises when one attempts to push either term further down to P
1.

Because the R1βi∗(Ui) is not a vector bundle we cannot simply apply the projection formula,

and

Rnβ1∗

(

U1

)

⊗ Rmβ2∗

(

U2

)

6= Rnβ1∗

(

U1 ⊗
[

β∗
1 ◦ Rmβ2∗

(

U2

)

])

6=

6= Rmβ2∗

([

β∗
2 ◦ Rnβ1∗

(

U1

)

]

⊗ U2

) (B.5)

in general. The solution to this problem is well-known, one has to work in the derived

category. That is, the tensor product has to be replaced by the derived tensor product,

and we have to take the hypercohomology of the resulting complexes. Fortunately, this is

relatively easy for skyscraper sheaves on P
1. Their derived tensor product is simply

Op ⊗
L

Oq =

{

0 , p 6= q ,

Op ⊕ Op[−1] , p = q .
(B.6)

Therefore, if p 6= q then

H i
(

X,U
)

= 0 , (B.7)

whereas if p = q then

H i
(

X,U
)

= H i
(

R∗β1∗

(

U1

)

⊗
L

R∗β2∗

(

U2

)

)

=

= H i
(

Op[1] ⊗
L

Oq[1]
)

= H i
(

Op[2] ⊕ Op[1]
)

'



























0 i = 3 ,

C i = 2 ,

C i = 1 ,

0 i = 0 .

(B.8)

Notice that we could have used the ordinary tensor product and cohomology as long as we

are only computing H2(X,U). This is precisely what we did in section 5, and it is justified

through the above computation.
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